Adaptively Tuned Iterative Low Dose CT Image Denoising
نویسندگان
چکیده
Improving image quality is a critical objective in low dose computed tomography (CT) imaging and is the primary focus of CT image denoising. State-of-the-art CT denoising algorithms are mainly based on iterative minimization of an objective function, in which the performance is controlled by regularization parameters. To achieve the best results, these should be chosen carefully. However, the parameter selection is typically performed in an ad hoc manner, which can cause the algorithms to converge slowly or become trapped in a local minimum. To overcome these issues a noise confidence region evaluation (NCRE) method is used, which evaluates the denoising residuals iteratively and compares their statistics with those produced by additive noise. It then updates the parameters at the end of each iteration to achieve a better match to the noise statistics. By combining NCRE with the fundamentals of block matching and 3D filtering (BM3D) approach, a new iterative CT image denoising method is proposed. It is shown that this new denoising method improves the BM3D performance in terms of both the mean square error and a structural similarity index. Moreover, simulations and patient results show that this method preserves the clinically important details of low dose CT images together with a substantial noise reduction.
منابع مشابه
3D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning from a 2D Trained Network
Low-dose computed tomography (CT) has attracted a major attention in the medical imaging field, since CTassociated x-ray radiation carries health risks for patients. The reduction of CT radiation dose, however, compromises the signal-to-noise ratio, and may compromise the image quality and the diagnostic performance. Recently, deep-learning-based algorithms have achieved promising results in lo...
متن کاملA Cascaded Convolutional Nerual Network for X-ray Low-dose CT Image Denoising
Image denoising techniques are essential to reducing noise levels and enhancing diagnosis reliability in low-dose computed tomography (CT). Machine learning based denoising methods have shown great potential in removing the complex and spatial-variant noises in CT images. However, some residue artifacts would appear in the denoised image due to complexity of noises. A cascaded training network ...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کامل2 M ay 2 01 4 Rate Optimal Denoising of Simultaneously Sparse and Low Rank Matrices ∗
We study minimax rates for denoising simultaneously sparse and low rank matrices in high dimensions. We show that an iterative thresholding algorithm achieves (near) optimal rates adaptively under mild conditions for a large class of loss functions. Numerical experiments on synthetic datasets also demonstrate the competitive performance of the proposed method.
متن کاملLow Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss
The continuous development and extensive use of CT in medical practice has raised a public concern over the associated radiation dose to the patient. Reduction of the radiation dose may lead to increased noise and artifacts, which can adversely affect the radiologists judgement and confidence. Hence, advanced image reconstruction from low-dose CT data is needed to improve the diagnostic perform...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015